The Government of Canada has recently increased investments in skills development to help Canadians prepare for the post-pandemic recovery and the future of work. However, these measures may have little impact without actionable data on the training options that can connect workers to in-demand jobs. To address this issue, Canada needs a comprehensive information system to link training, skills and jobs. This paper is a call to action for employers, training providers and government agencies of all levels to work together to lay the foundation of a robust pan-Canadian mapping of training and employment opportunities.
Canadian workers are under mounting pressure to upgrade their existing skills and learn new ones. This process began long before the disruption brought on by the novel coronavirus as far-reaching shifts in society, such as automation and an aging population, transformed the world of work. The COVID-19 pandemic and resulting economic crisis have only heightened the importance of access to education and training for the skills that employers need.
Since March 2020, millions of Canadians have been laid off in the most dramatic retrenchment in economic activity since the Second World War.[1] While many of those layoffs were temporary, there is little doubt that hundreds of thousands of workers have yet to return to work. Compounding the disruption is the fact that even the most knowledgeable experts have little idea what the labour market will look like once the health crisis has passed, especially in the hardest-hit sectors such as oil and gas and tourism.[2]
Amid this uncertainty, we can make one confident prediction: in the months and years to come, many Canadians will be looking for jobs that demand new skills (e.g., data analytics), or will need to adapt to far-reaching changes in their existing occupations (e.g., by learning to work remotely). Such career transitions — whether from a sector unable to fully recover after COVID-19, a voluntary change or a shift induced by new automation technology — have a much higher chance of success if the affected workers are able to identify the gaps in their current skills, and then find training programs to bridge those gaps.
However, charting a new course in skills development is a daunting task, made more so by a scarcity of career counsellors for working-age people. Without a unified source of information that links training programs to skills, Canadians have little choice but to muddle through by poking around online and relying on word-of-mouth advice. Some may end up wasting time, money and energy on unsuitable training programs. Many others may not invest in training at all, thereby hampering their ability to make a fresh start in their careers. Financial incentives to encourage investment in training, such as the new Canada Training Benefit, may have little impact if potential learners do not have access to information to guide their choices.
The challenge is equally formidable for employers looking to fill the jobs. Although the large pool of job seekers should to be a boon, many businesses and other employers expect to face skills shortages as they ramp up production after the pandemic is over.[3] For example, manufacturers have cited a scarcity of skills as one of their top concerns after pandemic-related disruptions.[4]
The bottom line is that, while individuals and firms alike are keen to develop the skills needed to thrive in our ever-changing economy, they lack the tools to identify those skills and find out where they can best be acquired. One particular problem is that the credentials of new hires, especially recent graduates with no work experience, often give little information about their actual skills, resulting in mismatches in the workplace that are costly to all.
Only a handful of tools for assessing an individual’s skills gaps are currently available, notably RBC’s UpSkills, the OECD’s Skills for Jobs database, and MaRS’s Planext tool. But these resources are of limited use. Even if they can help an individual accurately identify skills gaps, they offer no information on where or how to rectify the situation. In particular, they provide no guidance for navigating the myriad of education and training resources that are available. Hence, a job seeker using one or more of these tools is still likely to have an array of unanswered questions: Where can I learn the skills I need? Are online courses effective? Are there university or college programs that provide the requisite skills without a four-year commitment? Are training options in my home city or province as good as those in other parts of the country? And so on.
To address these shortcomings, we need to develop a comprehensive Canadian system that links — or, in technical terms, “maps” — skills sought in the marketplace with those that can be learned through training and education programs. Such a comprehensive mapping system would have three interlocking components:
Designing and implementing each of these components will take time, effort and close collaboration between all parties involved, including employers, training providers and government agencies of all levels.
Our paper offers some insights into how this difficult but vital task can be accomplished. It will — we hope — spur all stakeholders to action.
Many organizations across the country provide training options, ranging from short online courses to year-long certificate programs and traditional four-year university degree programs. The Open Database of Educational Facilities, compiled by Statistics Canada, lists over 2,000 post-secondary and 64 vocational training institutions in Canada’s 13 provinces and territories.[6] Complicating matters is the fact that education falls under provincial jurisdiction, while labour market policy is a shared federal-provincial responsibility. While this diversity encourages the provision of high-quality education across the country, it also has a significant drawback, namely, that some professional certifications and training programs cannot be easily transferred between provinces. Thankfully, there are some signs of progress, with initiatives like the Red Seal certification program for tradespeople helping to lower barriers to training and labour mobility. Nevertheless, we must recognize that, given the provincial jurisdiction over education, coordination among the three orders of government is essential to successfully identifying education and training providers.
On a deeper level, Canada faces the same challenge as other countries in shifting from a training system based on credentials to one focused on skills development. Formal credentials, such as diplomas, degrees and certificates, are meant to signal that the holder possesses specific skills and knowledge; yet, as every employer knows, most traditional credentials offer only a limited insight into an individual’s real abilities and potential. To make matters worse, Emna Braham and Steven Tobin from the Labour Market Information Council point out that Canada lacks systems for capturing robust information on skills.[7] Linking the numerous opportunities for training across Canada to specific skills is thus an essential part of broadening data collection systems beyond raw information on credentials.
The fragmented nature of Canada’s training sector and the dearth of high-quality skills information mean that, despite the many opportunities to acquire new skills, it is exceedingly difficult for Canadians to get an answer to this simple question:
“What training options are available for me to learn how to do XYZ at work?”
To provide meaningful answers to this question, we need to know at a minimum what training programs are on offer. A simple list of available courses, however, is not enough. To help individuals find the right courses, we need to map the existing fragmented information on course offerings to the specific skills required for a job that are understood by both employers and job seekers. While it is true that employers are often inconsistent or unclear about the precise competencies they are looking for from job applicants, a widely accepted skills taxonomy used in training programs could go a long way toward creating a common understanding of what each skill comprises and a common terminology. Ultimately, the taxonomy should reflect the real-world language people use to talk about skills.
A number of skills taxonomies are already in use. While each has its own unique features, they tend to fall into two broad categories
The choice of a taxonomy for skills and work requirements is not a binary one between the two types outlined above. Ideally, it should strike a balance between the benefits and drawbacks of each, guided by the principle that it should address the needs both of employers and of Canadians navigating the world of work.
The scale and complexity of Canada’s training sector call for a phased approach, starting with a project of limited scope. Over time, lessons learned from this initiative would be invaluable for expanding the mapping system. Options to narrow the project’s initial scope are discussed below but, whatever its scale, the exercise will require coordination and collaboration between a diverse group of actors. Even a modest pilot project will need to bring together all levels of government, nonprofit organizations, education providers (both public and private) and potential users. Key players that could help coordinate the project and provide some of the necessary information include the Council of Ministers of Education, Canada (CMEC), the Labour Market Information Council (LMIC) and the Future Skills Centre, plus many others.
Tapping into the networks of these and other entities committed to high-quality labour market information is a crucial step toward achieving the goals laid out in this paper.
The COVID-19 pandemic has amplified economic inequalities and vulnerabilities, especially among those unable to work from home. Even as governments around the world plan for a post-COVID economy, their more immediate aim must be to help individuals who have lost jobs return to work, while continuing to support those unable to return. At the same time, policy-makers cannot ignore longer-term structural shifts — such as climate change, globalization, demographic changes, and digitization and automation — that are transforming the skills demanded by employers across a wide swath of the economy.[8]
We examine below each of these long-term shifts, its impact on workplace skills, and the importance of retraining:
Building a labour force capable of adapting to these structural changes will, in itself, put new demands on Canada’s training resources. More than that, lifelong learning will become imperative for all of us — if it is not already.
Both the short-term disruptions caused by COVID-19 and the long-term structural changes outlined above point to a fast-growing demand for high-quality labour market information on training and skills. Yet job seekers often find it difficult to find such data. According to surveys conducted by the LMIC, half of Canada’s prime-age workers (namely, those aged 25 to 54) are looking for more detailed information than what is currently available on the skills required for specific jobs. In fact, no other type of workplace information is more sought after, except for wage data.[17] Moreover, a third of respondents say they cannot find the details they are looking for on job certification or education requirements.[18] More generally, the surveys conclude that 47 percent of recent immigrants, 51 percent of persons with disabilities, 52 percent of recent graduates and 56 percent of the unemployed have difficulty finding labour market information relevant to their needs.[19]
This dearth of information contributes to the larger problem of lack of access to training — particularly for the less advantaged, as training opportunities for workers tend to be limited and unevenly distributed.[20] Only about one-third of Canadian workers receive job-related, nonformal workplace training that lasts on average 49 hours a year — well below the OECD average of 58 hours. In addition, workplace training in Canada is not equally available to all who need or want it: low-skilled and older workers in particular are less likely to receive training than other groups.[21] For those who do receive some kind of training, the trend is toward informal learning with a growing number of employees initiating their own self-paced e-learning.[22] A solution to this problem, namely, giving all Canadians equal access to training and education programs that they need, calls for a collaborative, pan-Canadian response.
While education in Canada is a provincial responsibility, labour markets are a shared federal-provincial jurisdiction. Workplace training falls under several umbrellas, depending on the type of program:
Given this array of programs, any initiative to map the training system clearly requires a pan-Canadian approach. While the initial stages may take the form of a pilot project limited to a single jurisdiction or instructional program, a mapping system must ultimately cut across all jurisdictions and include every relevant program if it is to live up to expectations.
Initiatives are underway in a number of other countries to set up systems that enable employees, job seekers, employers and training providers to identify appropriate training opportunities.
Singapore launched one of the most comprehensive platforms, MySkillsFuture, in 2017. The portal is designed for three user groups — employees, employers and training providers. Employees can personalize their learning needs by assessing their interests, and then match them to the type of training needed for their chosen career path. In other words, while the platform does not map training to skills, it allows individuals to choose and undergo a skills assessment test before selecting a particular training course. Employers can use the platform to obtain information on training opportunities for their staff. Finally, training providers can post training programs and other content. The portal builds on a pilot project originally launched in 2014 with 200,000 participants testing the career-analysis and job-matching tools.
The OECD’s Skills for Jobs platform enables individuals to select their current occupation and a desired target occupation, and then provides some detailed information on the skills needed to make the career transition. The platform does not, however, map skills to specific training programs.
The European Council launched its Upskilling Pathways program in 2016, targeting low-skilled adults across the European Union. The main goal of this initiative is to bring together existing policies and services in a coordinated manner and within a coherent strategy that recognizes the different needs and characteristics among those with lower skills. Upskilling Pathways comprises three steps. First, a skills assessment identifies gaps in existing skills. The individual then receives a tailored training offer from an accredited organization. Depending on the specific member country, this can be a government agency or a nonprofit organization. Finally, whatever skills he or she acquires are validated and recognized under their national qualifications framework (e.g., in Germany, this is done by Chambers of Commerce and Industry). In addition, EU member states have been increasing their effort to align national qualifications frameworks with the European Qualifications Framework.
In the US, job seekers can obtain information on occupational skills through the My Next Move program. Developed and maintained by the National Center for O*NET Development, the platform provides information on tasks, skills, salaries and job outlook covering over 900 careers. In addition, it sets out educational requirements for specific occupations and guides the user to institutions or apprenticeship programs that offer the relevant training. My Next Move enables users to browse occupations by industry and keywords. For those unsure which career to pursue, it has a built-in “interest profiler” to help narrow the search.
As these initiatives show, the need to provide data-driven skills and training information is not confined to Canada. However, the experience of Singapore, the EU and the US suggests that getting such projects off the ground requires a sustained effort on the part of key government players. The keys to success are persistence and collaboration.
A comprehensive mapping of the training and education system comprises three interlocking components:
These three components can be put in place using a phased approach, with some of the work being done simultaneously. Each phase comes with its own conceptual and logistical challenges that need to be addressed by a broad consortium of stakeholders working together. Our proposal for successfully executing this process is outlined below.
Setting up a database of training and education programs requires decisions on which programs and courses to include in the system, and which to exclude. For example: Should all college and university courses be included, even doctoral programs? Should basic literacy and adult high-school equivalency programs be part of the mapping? What about short online courses that provide only basic familiarity with a specific computer program?
The complexity of the mapping exercise depends crucially on its scope, which can be broadened or narrowed according to types of providers, training and/or geography. Reducing complexity, however, carries the risk of jeopardizing the quality — and thus the usefulness — of the skills training database.
In our view, the potential benefits of an ambitious approach fully justify the extra effort involved. In other words, the database should include education and training options from the widest possible variety of sources. The broader the scope of a training mapping system, the more useful it will be. We therefore recommend that it be designed to encompass post-secondary education, apprenticeship programs, certification programs and certified microcredential courses from both private and public sector providers.
Early consultations with users are critical to defining the kind of information that needs to be collected, and the form or structure it should take. Questions that need to be resolved include: Is the information on the total program cost to learners sufficient? Or will they expect to have more detailed cost breakdowns to compare across options by training hour?
Once the various types of information are identified, they need to be organized and structured. This process requires making decisions on various issues, some of which can probably be resolved quite easily (e.g., how to record the province of study), but others are more consequential (e.g., how to structure the database). These technical considerations are beyond the scope of this paper, but they need to be considered carefully alongside user consultations. Technical decisions taken early on can have wide implications down the line, particularly as more information begins to be integrated into the original data architecture. For this reason, it is essential to develop a detailed blueprint of the database prior to collecting any data.
Once the data architecture is determined, the collection process can begin. Unlike a regular survey, detailed qualitative information will have to be collected directly from training and education providers. Since the providers record details such as training type, course structure, location and start date in different ways, organizing the raw material into coherent structures will be a major undertaking. Another challenge will be to overcome long-standing barriers among provinces to sharing education information. Indeed, previous efforts to gather such data have run into a brick wall.[23]
No skills taxonomy is perfect. They can only be designed and developed through extensive consultations with potential users. The input of vulnerable populations — immigrants, women, Black, Indigenous and people of colour, and persons living with disabilities — will be especially important in ensuring that the taxonomy is useful to the end-user. The lived experience of these groups would help ensure that the taxonomy reflects what people actually need, and ultimately assist in its success.
Ideally, the skills taxonomy should comprise a mix of the following:
Many of these skills and work requirements are already elements in Employment and Social Development Canada’s Skills and Competencies Taxonomy and the Occupational and Skills Information System (OaSIS) project, which is an important effort to develop a pan-Canadian system linking skills to occupations. Both could serve as a useful starting point for a taxonomy specifically designed to map skills to training and educational programs.
The taxonomy must also take into account Canada’s two official languages. It is crucial not only to devise a common understanding of terms, but to agree on what the equivalent term is in the other official language.
Indeed, the value of the taxonomy developed through this process is practical usability: Are the proposed skills and other work requirement categories meaningful enough for Canadians to make informed decisions about specific training programs? On a practical level, training programs must be able to fulfill the skills and work requirements listed — but that is a separate issue discussed in more detail below.
The link between training programs and skills will be made via indicators — descriptors containing information on whether a skill can be obtained in the course of the training program. An indicator will contain a value assigned to each skill in the taxonomy for each training program or course linked to that skill. This value could be binary (“yes”/”no”) as in the European Skills, Competences, Qualification and Occupations system to link skills with occupations; or it could be ordinal (“low”/“medium”/“high”) as in the US O*NET system.
O*NET uses two indicators to map skills to occupations. Every occupation is assigned a value for the importance of each of the 35 skills, as well as a value for its level of complexity. For example, the O*NET system rates social perceptiveness — a social skill — as being more important for registered nurses than for, say, economists, as indicated by the importance ratings of 78 out of 100 for nurses and only 47 out of 100 for economists. The complexity ratings tell us that nurses’ tasks that require social perceptiveness are also more complex than those of economists (complexity ratings of 63 and 41 out of 100, respectively).[24]
A wide variety of other indicators can be used, for example, the proportion of graduates with budgeting skills at a specific level or higher; or the average improvement in skill gained through a course. Consultation with users and training providers would determine which indicators best suit Canada’s needs.
The most difficult step in the mapping process may be to determine whether an education or training program delivers on its promise to develop a specific skill. Matching expectations with outcomes is at the heart of the mapping exercise and must be both accurate and credible. While close collaboration with training providers is essential, they have a strong incentive to link their programs with the largest possible set of skills, and the highest possible level of the skill development.
Balancing collaboration with the need for unbiased measurement of the skills promised by specific programs is sure to be a never-ending challenge. The greatest risk to the mapping process is that training providers come to view the rankings either as an advertisement for their programs that they can freely manipulate, or as an unfair and/or inaccurate value judgment, as has often been the case with Maclean’s annual rankings of Canadian universities. Ultimately, the fear of being ranked poorly will likely dissipate if the mapping to skills has a large enough user base to incentivize widespread participation by program providers.
These concerns highlight the importance of designing a mapping system that is as functional, reliable and informative as possible. One approach to ensure quality in the early stages would be to involve a third-party assessment and validation of proposed listings. Another, as we described earlier, would be to rely on frequent validations by the system’s users. Other options may emerge during the consultation process.
However, it would be extremely difficult to come up with an accurate assessment of skills that can be developed through training. Such a system would likely require testing students’ skills both before and after they undertake a program, clearly a time-consuming and costly exercise. A more realistic approach may be to start only with program providers reporting the top five or ten skills and other work requirements that participants can expect to develop. This narrower, more limited approach could help simplify the challenging and potentially controversial process of linking skills outcomes to a large number of specific programs.
If the database is to be more than an interesting academic exercise, it needs to contain far more information than a list of skills linked to program names and providers. Giving priority to the needs of end-users is essential. They will surely expect information on, among others, the location of study, cost of enrolment, time commitment, and whether the program can be done part-time or partially completed.
Data on programs and specific skills must be regularly updated and verified. One approach would be a wiki-type interface, in which training and education stakeholders can easily update their information as programs change. This would require some kind of quality assurance check, and guidelines on precisely what information can be updated.[25] For example, it would make sense for training providers to update program names, costs and other logistical information, but it is less clear whether or how they could update the skills linked to their programs. Updating the linkages to skills would depend on the chosen skills indicators and measurement method. The design of the indicators should thus take into account the feasibility of straightforward, regular updates to skills information.[26]
We have identified five key principles for effectively mapping the education and training system to skills:
Mapping the Canadian training system will be a massive undertaking. We believe that the best way of getting a project of such magnitude and complexity off the ground is to start with a pilot project. Given that the ten provinces have primary jurisdiction over education and training, the pilot would ideally involve just two or three of them. These provinces would then share with other provinces the lessons they learn and improvements they make that could be incorporated into future iterations of the project. Organizations providing training, education and career guidance in the pilot provinces would need to be identified and brought on board. In order to keep the pilot to a manageable scale, it could prioritize mapping of training and educational programs for a specific target group, such as mid-career workers.
As mentioned above, several countries already have experience with online platforms. It would thus make sense for the Canadian pilot to include a research component centred on lessons to be learned from Singapore, the UK, the US and other international players.
Working within the three-phase framework described in the previous section, the pilot project would include the following steps:
These tasks underscore the importance of close collaboration among a variety of players if the mapping project is to get off the ground successfully. We are confident that the benefits to be reaped will be well worth the effort.
Mapping skills to Canada’s rich and diverse system of training will produce incalculable gains by reducing the time and energy needed to navigate the current patchwork of information spread across websites, brochures, articles and personal anecdotes.
Creating the three components of this mapping — a database of training and education programs; a meaningful taxonomy of skills and other work requirements; and the linkages between the two — is a massive undertaking that no one organization can tackle by itself. The scale of the project, combined with its complexity and the need for transparency, calls for a process that brings together all levels of government, nonprofit organizations, public and private education providers, and potential users. Furthermore, for the mapping to be a trusted source of information, it needs to be developed and maintained in a transparent way.
Given some of the complexities of sharing information between federal, provincial and territorial governments, it will be important to build a coalition that brings together a wide and diverse group of players able and willing to share and jointly coordinate such an endeavour. Thankfully, a number of organizations in this field already work collaboratively across jurisdictions. They include the CMEC, the Forum of Labour Market Ministers, the LMIC, and the Future Skills Centre as well as ministries responsible for education and training within the provinces.
This paper is a call to action for these and other organizations to convene and assess the scope and initial resources required to undertake a pilot project to generate practical insights as to how to move forward with a comprehensive mapping of Canada’s training ecosystem. We believe there is little to lose and much to gain on behalf of the millions of individual Canadians and tens of thousands of businesses that would benefit from such a valuable service.
[1] T. Bonen, “The Speed and Magnitude of Job Losses in 2020 Are Entirely without Precedent,” First Policy Response, 3 June, 2020, https://policyresponse.ca/2008-vs-2020-whats-different-this-time-around/#tony-bonen-director-of-research-data-and-analytics-labour-market-information-council.
[2] Labour Market Information Council (LMIC), “A (Small) Glimmer of Hope in Today’s Job Report?” April 15, 2020, https://lmic-cimt.ca/a-small-glimmer-of-hope-in-todays-job-report; Labour Market Information Council (LMIC), “Sectors at Risk: The Impact of COVID-19 on the Canadian Tourism Industry,” LMI Insights no. 30, May 2020, https://lmic-cimt.ca/wp-content/uploads/2020/05/LMI-Insight-Report-no-30.pdf; Labour Market Information Council (LMIC), “Sectors at Risk: The Impact of COVID-19 on the Canadian Oil and Gas Sector,” LMI Insights no. 33, June 2020. https://lmic-cimt.ca/wp-content/uploads/2020/06/LMI-Insight-Report-no-33.pdf.
[3] For a detailed discussion of the definition, see Labour Market Information Council (LMIC), “What’s in a Name? Labour Shortages, Skills Shortages and Skills Mismatches,” LMI Insight Report no. 3., October 2018 https://lmic-cimt.ca/publications-all/lmi-insights-report-no-3-whats-in-a-name-labour-shortages-skills-shortages-and-skills-mismatches.
[4] Labour Market Information Council (LMIC), “Sectors at Risk: The Impact of COVID-19 on Canadian Manufacturing,” LMI Insight Report no. 34, June 2020, https://lmic-cimt.ca/publications-all/the-impact-of-covid-19-on-canadian-manufacturing.
[5] A taxonomy is classification system for organizing categories in a hierarchical structure. For example, Employment and Social Development Canada has recently produced such a system in its Skills and Competencies Taxonomy that can be explored here: https://noc.esdc.gc.ca/SkillsTaxonomy/SkillsTaxonomyWelcome/f5ec9457d5a540eeb4529c2698acb19a.
[6] The database does not include any online providers. Adding digital courses would likely increase these numbers substantially.
[7] E. Braham and S. Tobin, “Solving the Skills Puzzle: The Missing Piece Is Good Information,” Skills Next, January 2020, https://ppforum.ca/wp-content/uploads/2020/01/SolvingTheSkillsPuzzle-PPF-JAN2020-EN.pdf
[8] LMIC, “The Impact of COVID-19 on Canadian Manufacturing.”
[9] LMIC, “The Impact of COVID-19 on Canadian Manufacturing.”
[10] W-H. Chen and R. Morissette, “How Do Workers Displaced from Energy-producing Sectors Fare after Job Loss? Evidence from the Oil and Gas Industry,” Statistics Canada, Economic Insights, September 22, 2020, https://www150.statcan.gc.ca/n1/pub/11-626-x/11-626-x2020021-eng.htm; J. Marchand, “Don’t It Make My Brown Jobs Green? What Renewable Energy Means for Jobs and Job Quality,” Perspectives on Work, 2017, https://www.lerachapters.org/OJS/ojs-2.4.4-1/index.php/LERAMR/article/view/3145/3117.
[11] Organisation for Economic Co-operation and Development (OECD), Workforce Innovation to Foster Positive Learning Environments in Canada, Getting Skills Right, 2020, https://doi.org/10.1787/a92cf94d-en. A. Beattie, “Will Coronavirus Pandemic Finally Kill Off Supply Chains?” Financial Times, May 28, 2020, https://www.ft.com/content/4ee0817a-809f-11ea-b0fb-13524ae1056b; D. Breznitz, “Is This Canada’s Last Chance to Revive Manufacturing and Long-Term Prosperity?” IRPP Policy Options (Montreal: Institute for Research on Public Policy), June 24, 2020, https://policyoptions.irpp.org/magazines/june-2020/is-this-canadas-last-chance-to-revive-manufacturing-and-long-term-prosperity.
[12] Labour Market Information Council (LMIC), “Understanding the Interconnectedness of the Future of Work: A Case Study in What’s Wrong with Current Discussions,” LMI Insights no. 22, December 2019, https://lmic-cimt.ca/wp-content/uploads/2020/01/LMI-Insight-Report-no-22.pdf.
[13] S. Farshchi, “Expect More Jobs and More Automation in the Post-Covid-19 Economy,” Forbes, April 10, 2020, https://www.forbes.com/sites/shahinfarshchi/2020/04/10/expect-more-jobs-and-more-automation-in-the-post-covid-19-economy/#6a88ef3f29b4; T. Kheiriddin, “Commentary: Robots Don’t Get Sick. Will COVID-19 Speed Up Workplace Automation?” Global News, April 23, 2020, https://globalnews.ca/news/6846608/coronavirus-economy-automation.
[14] McKinsey Digital, “The COVID-19 Recovery Will be Digital: A Plan for the First 90 days,” May 14, 2020,
https://www.mckinsey.com/business-functions/mckinsey-digital/our-insights/the-covid-19-recovery-will-be-digital-a-plan-for-the-first-90-days.
[15] M. Crawford Urban and S. Johal, “Understanding the Future of Skills: Trends and Global Policy Responses,” Skills Next, January 2020, https://ppforum.ca/wp-content/uploads/2020/01/UnderstandingTheFutureOfSkills-PPF-JAN2020-EN.pdf.
[16] McKinsey & Company, “The Future of Work in America: People and Places, Today and Tomorrow,” July 11, 2019, https://www.mckinsey.com/featured-insights/future-of-work/the-future-of-work-in-america-people-and-places-today-and-tomorrow; D.H. Autor, F. Levy and R.J. Murnane, “The Skill Content of Recent Technological Change: An Empirical Exploration,” Quarterly Journal of Economics, 118, no. 4 (November 2003): 1279-1333; D.H. Autor and D. Dorn, “The Growth of Low-Skill Service Jobs and the Polarization of the US Labor Market,” American Economic Review, 103, no. 5 (August 2013): 1553-97; J. Bessen, “How Computer Automation Affects Occupations: Technology, Jobs, and Skills,” Boston University School of Law, Law and Economics Research Paper, October 3, 2016.; F. MacCrory, G. Westerman, Y. Alhammadi, and E. Brynjolfsson, “Racing with and against the Machine: Changes in Occupational Skill Composition in an Era of Rapid Technological Advance,” Proceedings of the Thirty-Fifth International Conference on Information Systems, 2014 Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH.
[17] Labour Market Information Council (LMIC), “LMI Most Wanted by Canadians: Wages and Skills,” LMI Insights no. 8, February 2019, https://lmic-cimt.ca/wp-content/uploads/2019/02/LMI-Insights-No-8.pdf.
[18] Labour Market Information Council (LMIC), “Is It Difficult to Find Information That Helps Career-Related Decisions?” LMI Insights no. 5, January 2019, https://lmic-cimt.ca/wp-content/uploads/2019/01/LMI-Insights-No.-5.pdf.
[19] Labour Market Information Council (LMIC), Public Opinion Research: Interactive Dashboard, 2019, https://lmic-cimt.ca/data-dashboards/survey-results-by-region.
[20] D. Munro, “Skills, Training and Lifelong Learning,” Public Policy Forum, March 29, 2019, https://ppforum.ca/publications/skills-training-and-lifelong-learning.
[21] OECD, Workforce Innovation to Foster Positive Learning Environments in Canada.
[22] The Conference Board of Canada, “Canadian Employers’ Investment in Employee Learning and Development Continues to Rise,” January 2018, https://www.conferenceboard.ca/press/newsrelease/2018/01/31/canadian-employers-investment-in-employee-learning-and-development-continues-to-rise?AspxAutoDetectCookieSupport=1.
[23] A. Parkin, E. Hartmann, and M. Morden, “How to Build a Skills Lab: A New Model of Institutional Governance in Canada,” Mowat Centre, Mowat Research #152, June 16, 2017, https://munkschool.utoronto.ca/mowatcentre/how-to-build-a-skills-lab; A. Usher, “FutureSkills Lab,” Higher Education Strategy Associates, May 8, 2018, https://higheredstrategy.com/futureskills-lab.
[24] Labour Market Information Council, Employment and Social Development Canada, and Statistics Canada, “Through the Looking Glass: Assessing Skills Measures Using 21st Century Technologies,” LMI Insights no. 32, June 2020, https://lmic-cimt.ca/wp-content/uploads/2020/06/LMI-Insight-Report-no-32-3.pdf.
[25] This means that training providers and educational institutions would enter or edit their information directly on the platform so that multiple users can provide relevant information, in much the same way as Wikipedia is organized.
[26] Some form of human-assisted machine learning could help with this. For example, Mechanical Turk, a crowdsourcing website used by businesses to hire remote workers for very specific tasks, conducts similar research on skills. Researchers post specific questions through this platform, which are then answered by the remote workers, as with a survey.
[27] Labour Market Information Council (LMIC), “Is This a Skill Which I See Before Me? The Challenge of Measuring Skills Shortages,” LMI Insights no. 14, June 2019, https://lmic-cimt.ca/wp-content/uploads/2020/01/LMI-Insights-No-14-2-1.pdf.
This study was published as part of The Future of Skills and Adult Learning research program, under the direction of Natalia Mishagina. The manuscript was copy-edited by Bernard Simon, proofreading was by Zofia Laubitz, editorial coordination was by Étienne Tremblay, production was by Chantal Létourneau and art direction was by Anne Tremblay.
Tony Bonen leads the Labour Market Information Council’s team of economists and data scientists. In this role he collaborates with colleagues across governments, academia and the private sector to deliver high quality labour market information. He brings expertise in policy analysis, data analytics, econometrics and research design.
Matthias Oschinski is an empirical economist with 20 years’ experience in applied research and statistical analysis. Over the past two decades he has held positions in academia and the public, private and nonprofit sectors, conducting quantitative and qualitative analyses. His research focuses on inclusive growth, well-being and climate change. As part of the teaching faculty at the University of Toronto’s Munk School of Global Affairs and Public Policy, he teaches economics at the graduate and undergraduate levels.
To cite this document:
Bonen, Tony and Matthias Oschinski. 2021. Mapping Canada’s Training Ecosystem: Much Needed and Long Overdue. IRPP Insight 34. Montreal: Institute for Research on Public Policy. DOI: https://doi.org/10.26070/kftr-r392
This work benefited greatly from feedback and recommendations from David Hartnett (Employment and Social Development Canada), Steven Tobin (Labour Market Information Council) and Shawn Anctil (Colleges and Institutes Canada). All views, errors and omissions in this work remain those of the authors.
The opinions expressed in this study are those of the authors and do not necessarily reflect the views of the IRPP or its Board of Directors.
IRPP Insight is an occasional publication consisting of concise policy analyses or critiques on timely topics by experts in the field.
If you have questions about our publications, please contact irpp@nullirpp.org. If you would like to subscribe to our newsletter, IRPP News, please go to our website, at irpp.org.
Cover photo: Shutterstock.com
ISSN 3392-7748 (Online)
Montreal — The recent Fall Economic Statement made it clear that the government is committed to investing in skills development to help Canadians weather the post-pandemic recovery. But how can we know what training helps to get the in-demand jobs?
In a new paper published by the Institute for Research on Public Policy, Tony Bonen (Labour Market Information Council) and Matthias Oschinski (University of Toronto) show that we are in dire need of a comprehensive information system that clearly links the skills acquired through training and education programs to those sought in the job market.
This system should have the following interlocking components:
“Designing and implementing each of these components is a massive undertaking requiring collaboration between employers, training providers, and government agencies of all levels. But it will pay off in the long term and lead to actionable data on the training options available to workers, while linking those data to in-demand jobs.”
“A pan-Canadian approach is required to make sure that the increasing investments in training are helping all Canadians get the skills they need to find and keep good jobs,” note the authors.
Developing this information system would be a very complex and massive undertaking, but an important first step is to conduct a pilot project and generate practical insights into how to implement this comprehensive mapping of Canada’s training ecosystem.
Millions of individual Canadians and tens of thousands of businesses would benefit greatly from such a valuable service. But decisive action and cooperation among all stakeholders would be required to ensure the project’s success.
Mapping Canada’s Training Ecosystem: Much Needed and Long Overdue, by Tony Bonen and Matthias Oschinski, can be downloaded from the IRPP’s website (irpp.org).
The Institute for Research on Public Policy is an independent, national, bilingual, not-for-profit organization based in Montreal. To receive updates from the IRPP, please subscribe to our e‑mail list.
Media contact: Cléa Desjardins, tel. 514-245-2139 cdesjardins@nullirpp.org
Amid the many uncertainties that this new year brings, we can make one prediction with confidence: In 2021 – and beyond – many Canadians will need some kind of training to ensure they have the skills needed to succeed in their current job or to find a new one.
However, as of today, Canada has no information system that would help workers in need of reskilling to find suitable education and training options that could provide sought-after skills.
The pressure to learn new skills has been building for some time and has been thrown into sharp relief. New technologies such as advanced robotics, blockchains, and augmented reality, are transforming the world of work, whether it’s running a warehouse, handling financial transactions, or constructing new buildings.
The coronavirus pandemic and accompanying economic crisis have only ramped up that pressure.
Working and learning from home have accelerated the advancement of these and other technologies that are now part of our daily lives – from learning to effectively facilitate conferences, workshops and team-building exercises using Zoom or TeamViewer, to schoolteachers and university professors designing courses that are delivered virtually.
At the same time, many workers who have lost their livelihoods due to the pandemic now face the daunting prospect of plunging into entirely new careers.
Effective training and skills programs will be central to helping these and other workers succeed in their current career path or to transition to entirely new ones. Such training can range from a half-day workshop on how to work collaboratively with a warehouse-organizing robot, or a five-year apprenticeship which integrates augmented reality tools and interfaces into the curriculum. But whatever shape it takes, these training programs will be successful only if Canadians can accurately identify the skills required for specific jobs, find the course or program that best teaches those skills, and have the ability and financial means to engage in that training.
For now, that is easier said than done. Despite the vast array of training options, it is difficult for Canadians to find answers to some basic questions: What training is available to me to learn how to do a particular task at work? Where can I learn the skills I need? Are online courses effective? Are there university or college programs available that provide the skills I need without a four-year commitment? Are training options in my home city or province as good as those in other parts of the country?
According to surveys by the Labour Market Information Council (LMIC), half of Canadian workers (25-54 years old) want more detailed information on the skills required for specific jobs. Indeed, except for salary/wage data, no other type of workplace information is more sought after than that pertaining to skills.
In a new paper for the Institute for Research on Public Policy, Mapping Canada’s Training Ecosystem: Much Needed and Long Overdue, we outline a blueprint for a comprehensive training information system that would link — or “map” — the skills sought by workers and employers to programs offered by universities, colleges and training specialists, as well as industry apprenticeship schemes.
The system mapping we propose would comprise three interlocking elements:
Such a comprehensive system would help individuals understand the skills requirements of various jobs and to find training that is best-suited to their needs and aspirations. Workers would benefit from improved job satisfaction and career planning. For employers, an efficient mapping system holds the promise of a substantial boost to productivity at a time when a serious skills shortage is looming. Manufacturers have recently cited a scarcity of skills as one of their top concerns after the pandemic-related disruptions, according to the LMIC.
Make no mistake, this is an ambitious and complex undertaking. According to Statistics Canada, there are more than 2,000 post-secondary and 64 vocational training institutions across the country. A complicating factor is that the provinces have jurisdiction over education, while labour market policy is a shared federal-provincial responsibility.
Further compounding the challenge is that system mapping must take into account the current shift taking place in most countries from training aimed at mainly providing credentials to training focused on the development and recognition of specific skills. Formal credentials, such as diplomas, degrees and certificates, are meant to signal that the holder possesses a certain set of skills and knowledge. Yet, as every employer knows, most give only a limited picture of an individual’s real abilities and potential.
We are confident that an efficient system mapping can overcome these obstacles, but only if some important conditions are met.
First and foremost is the need for close collaboration between employers, training providers and government agencies at all levels. Players with key roles in launching such a venture could include the Council of Ministers of Education, Canada (CMEC), Forum of Labour Market Ministers (FLMM), LMIC and the Future Skills Centre, among others.
We believe that a phased approach would be the best way of getting an effective, pan-Canadian mapping system off the ground. The first step would be a pilot project limited to two or three provinces or territories.
We envisage that the pilot would be implemented in stages, as follows:
Our paper is an urgent call to action. Without a trusted source of information that links training programs to skills, Canadians will have little choice but to muddle through by poking around online and relying on word-of-mouth advice. Some may end up wasting time, money and energy on unsuitable training programs. Many will not invest in training at all, hampering their ability to make a fresh start in their careers.
A successful mapping of Canada’s training programs to skills development stands to benefit not only workers and employers who gain most directly from smart training choices, but the entire Canadian economy. However, the challenge and scale of mapping Canada’s education and training systems to skills should not be underestimated. It is therefore essential to begin with a pilot project that can test and gather lessons learned to determine how best to move toward full implementation. We believe now is the time to test bold initiatives.
COVID-19 has put many Canadians out of jobs. But even after the pandemic ends, there’s no indication the labour market will go back to the way it was. Automation, climate change, and the rise of gig work will all have very real consequences for the nature of work.
In light of these disruptions, giving job seekers and employers the support they need is more important than ever. Today on the podcast, we’re joined by the authors of an IRPP paper that’s looking at one piece of the puzzle: how to help people get the skills they need to succeed in the jobs of tomorrow.
Tony Bonen leads the Labour Market Information Council’s team of economists and data scientists, delivering high-quality labour market information to stakeholders and decision-makers. Matthias Oschinski is an economist specializing in inclusive growth, well-being and climate change at the University of Toronto’s Munk School of Global Affairs and Public Policy.
Read more in Mapping Canada’s Training Ecosystem: Much Needed and Long Overdue.
Download for free. New episodes every other Wednesday. Tweet your questions and comments to @IRPP.